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The dipole-exchange spin wave spectrum for anisotropic 
ferromagnetic films with mixed exchange boundary 
conditions 

B A Kalinikos?, M P Kostylevi, N V Kozhus’t and A N Slavin§ 
School of Computing and Information Technology, The Polytechnic, Wolverhampton, 
Wulfruna Street, Wolverhampton WV1 lLY,  U K  

Received 5 June 1989 

Abstract. A theory is developed for dispersion characteristics of spin waves in ferromagnetic 
films taking into account both dipole-dipole and exchange interactions, crystallographic 
anisotropy and mixed exchange boundary conditions on the film surfaces. An arbitrary 
orientation of the external bias magnetic field with respect to the orientation of crys- 
tallographic axes and the film normal is assumed. The influence of crystallographic anisotropy 
on the spin wave spectrum of a ferromagnetic film is discussed. The theoretical results 
obtained are compared with the results of experiments performed in yttrium-iron garnet 
(YIG) and Mn-ferrospinel films. 

1. Introduction 

Recent experiments performed in the thin monocrystalline yttrium-iron garnet (YE) 
films demonstrated that the spin wave (sw) excitation and propagation in such films 
could be affected simultaneously by several relevant factors: dipole-dipole interaction, 
inhomogeneous exchange interaction, spin pinning conditions (or exchange boundary 
conditions) which are determined by the surface anisotropy, and the crystallographic 
anisotropy in the film volume (see e.g. Adam et a1 1978, Andreev et a1 1984, Kalinikos 
et a1 1983). 

In particular, the paper by Andreev et a1 1984 showed that the width of the dipole 
‘gaps’ in the dipole-exchange sw spectrum of the 0.5 pm thick YIG film depends sig- 
nificantly on the orientation of the crystallographic axes of the film with respect to the 
orientation of the bias magnetic field. 

The existing theory of sw spectra in ferromagnetic films (FF) considers the influence 
of crystallographic anisotropy on the sw spectrum mostly in the non-exchange limit (see 
e.g. Sneider 1972, Vittoria and Wilsey 1974, Bajpai eta1 1979, Patton 1979a, b, Lemons 
and Auld 1981, Beregov 1984, Gieniusz and Smoczynski 1987). Several papers where 
crystallographic anisotropy was taken into account in the dipole-exchange theory are 
restricted to certain particular cases of egernal bias magnetic field orientation for the 
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films of cubic or uniaxial ferromagnets (see e.g. Galkin et a1 1985, Rad0 and Zhang 1986, 
Miteva et a1 1986, Rad0 and Hicken 1988). So the problem needs a closer and more 
general consideration. 

Our present paper is aimed at such a consideration. In the paper we develop dipole- 
exchange theory of sw spectra in FF magnetized in an arbitrary direction with arbitrary 
values of crystallographic and surface anisotropy, so all the relevant factors are taken 
into account. The paper represents an extension of our previous calculations of the 
dipole-exchange sw spectrum in FF (see Kalinikos and Slavin 1986) for the case of 
anisotropic FF having arbitrary directions of crystallographic axes. 

The structure of the paper is as follows. In section 2 we formulate the problem and 
obtain the infinite system of algebraic equations for the amplitudes of spin wave modes- 
the eigenfunctions of the boundary problem for anisotropic FF. In section 3 we obtain 
the exact sw dispersion equation for anisotropic FF in the form of an infinite determinant 
and solve this equation numerically. In section 4 the same dispersion equation is repre- 
sented in the form of an infinite series. A simple, approximate sw dispersion equation 
for anisotropic FF is obtained in section 5 using classical perturbation theory. This is 
followed by a discussion of the sw spectrum of anisotropic FF in the particular cases 
of perpendicular and tangential magnetization in sections 6 and 7 respectively. The 
hybridization of sw modes in anisotropic FF is considered in section 8. In the same section 
we discuss the influence of crystallographic anisotropy on the width of dipole 'gaps' in 
the dipole-exchange sw spectrum of anisotropic FF. The conclusions are given in section 
9. 

2. Formulation of the problem and the principal equations 

We consider a ferromagnetic film of a thickness L in the E direction. In the other two 
directions (q and f )  the film is considered to be infinite (see figure 1). The axis f is 
assumed to be parallel to the direction of propagation of the spin wave: 

4 6 ,  f ,  t) = 4 E 9  k c )  exp[i(ot - k&I* (1) 
The film is magnetized to saturation by a bias external magnetic field H o  of an 

arbitrary direction which is determined by the angles OH and qH. For the convenience 
of further analysis we introduce yet another coordinate system, x ,  y ,  2, in which the axis 
z is parallel to the direction of the saturation magnetizationM,. The transition from the 
coordinate system E ,  q ,  ( to the coordinate system x ,  y ,  z can be done by means of 
orthogonal transformations of rotation through angles q and (n/2 - 0). 

The matrices of these transformations are of the form 

i., s i n q  cos) q =  k o s o  

1 0  0 sin 0 0 -cos 0 

q = 0 c o s q  - s in9  

:in 01 '  

Here and henceforth tensors and matrices are denoted as bold, sans serif characters. The 
angles q and Ocharacterizing the equilibrium orientation of the saturationmagnetization 
M O  are determined from the minimization procedure for the density of magnetic energy 
of the anisotropic FF (see the appendix). 

We shall derive expressions for the spectrum cc) = f(k;) of the non-uniform plane sw 
(1) in FF taking into account dipole-dipole interaction and inhomogeneous exchange 
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(11 2 )  
Figure 1. The geometry and orientation of the 
coordinate axes. 
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Figure 2. Transformation of the dipole-exchange 
sw spectrum in tangentially magnetized f:rro- 
magnetic film with the change in the direction of 
propagation of the spin wave with respect to the 
direction of equilibrium magnetization M ,  
(kl 1 w13 k2i/M,,). 

interaction as well as the crystallographic anisotropy in the film volume and exchange 
boundary conditions on the film surfaces. 

The total effective magnetic field in the Landau-Lifshitz equation of motion for 
magnetization (see e.g. Lax and Batton 1962, Kalinikos 1981) in our case has the form: 

(2) ~ ~ ~ ~ ( r ,  t )  = H ,  + h d ( r ,  t )  + hex(r ,  t )  + ha(r, t )  

where HI = H o  + Hdo + Ha is a constant internal magnetic field consisting of an external 
bias magnetic field H o ,  a constant dipole (or demagnetization) field HdO, and a constant 
field of the crystallographic anisotropy H t  . The direction of the constant internal mag- 
netic field& coincides with the direction of the constant magnetizationMo. All the other 
components of the effective magnetic field (2) are variables: hd(r, t )  is a variable dipole 
field, he, = aV2m(r, t )  is a variable exchange field (where a is the exchange constant and 
m(r, t )  is the variable magnetization in the FF), andha is avariable field of crystallographic 
anisotropy. 

The effective fields of crystallographic anisotropy can be calculated if the expressions 
for the densities of energy of anisotropy E, and E, are known. For the linear problems 



9864 B A Kalinikos et a1 

when the condition m(r, t )  < M O  is observed there is, however, an easier way to calculate 
the effective magnetic fields created by crystallographic anisotropy-namely the method 
of effective demagnetization factors (see e.g. Gurevich 1973). In the framework of this 
method the effective magnetic field of anisotropy Ha(r ,  t )  is represented in the form 

H a ( r ,  t )  = H i  + ha(r ,  t )  = - NaMo - Nam(r, t )  (3) 
where N” is the tensor of effective demagnetization factors of crystallographic 
anisotropy. The components of the tensor Na can be demagnetization factors of any type 
of anisotropy or the sum of demagnetization factors of different types of anisotropy 
taken into account simultaneously. 

For example, in the case of a cubic monocrystalline film having induced uniaxial 
anisotropy, the components of the tensor Na can be represented as a sum of de- 
magnetization factors of cubic anisotropy N” and uniaxial anisotropy Nu 

N” = N A  + Nu. 

Determining components of the tensor Nd for each type of anisotropy may be 
considered in this context as a separate problem. The solution of such a problem for the 
case of a ferromagnetic ellipsoid having cubic and uniaxial anisotropy and the arbitrary 
direction of the crystallographic axes with respect to its geometrical axes is presented in 
Belyakov (1984, 1986). We shall use this solution here to determine the effective 
magnetic fields for different types of crystallographic anisotropy in FF. 

In accordance with Kalinikos and Slavin (1986) we shall rewrite the initial system of 
equations consisting of the linearized Landau-Lifshitz equation of motion for mag- 
netization Maxwell equations in the magnetostatic limit and the usual electrodynamic 
boundary conditions in the form of a matrix integral-differentia1 equation for vector 
Fourier amplitude of the spin wave (1): 

Fm(E, kl-1 = hd(E, k c ) ,  (4) 
where hd(j, k t )  is a Fourier amplitude of the variable dipole magnetic field which is 
determined by the expression (see Kalinikos and Slavin 1986) 

LIZ 

hd(E, k c )  = G(5?? E ‘ >  k c ) m ( f ’ ,  k c )  dE‘ .  ( 5 )  L2 
The tensorial Green function of the Maxwell equations in the magnetostatic limit G is 
defined in Kalinikos (1981). 

After separating the diagonal part J of the linear matrix-differential operator F in 
the coordinate system x ,  y ,  z we may represent equation (4) in the following form: 

where 

J = ( - a d 2 / d E 2  + a k 2  + w H / w , ~ ) I  

Ho, is the z-projection of the external bias magnetic field H,, HdOz is the z projection of 
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the constant demagnetization field HdF, /gl is the modulus of the gyromagnetic ratio for 
electron spin and po is the permeability of vacuum. 

To derive the expressions for the dipole-exchange sw spectrum of a ferromagnetic 
film we may integrate equation (6) along with the exchange boundary conditions which 
depend on the surface anisotropy. In the case of uniaxial surface anisotropy the exchange 
boundary conditions are given by (see Soohoo 1965): 

am’(E)/aE + d ~os’tlm”(E) = 0 

dmy(E)/aE + d cos26mJ ( E )  = 0 (7)  

where d is a parameter of spin pinning on the film surface. 
In accordance with Kalinikos and Slavin 1986 we shall solve (6) by expanding m(E) 

in the infinite series of complete orthogonal vector functions-spin wave modes (SWM) 

se ( E ) :  

SWM are the eigenfunctions of the diagonal matrix-differential operator J and they satisfy 
the exchange boundary conditions ( 7 )  on both film surfaces (see Kalinikos and Slavin 
1986). 

Substituting (8) for the m(S) in equation (6) and using the orthogonality of the SWM 
we obtain the infinite system of algebraic equations for the SWM vector amplitudes 
m, = ( m i ,  mfl): 

D,lnm, + Rn,!,m,, = 0 n ,  n’ = 1 , 2 , 3 ,  . . (9) 
,in’ 

where 

J{ = Q { / a j M  are the eigenvalues of the boundary problem (7) for the differential oper- 
ator J; n, n’ = 1 , 2 , 3 .  . . ; p , p ‘  = x ,  y .  The frequency G?{ is given by the equation 

L22 = w H  + aw,w(k$)Z  (12) 
where (k{)’ = k 2  + (IC{)’, and the transverse component IC{ of the full sw wavevector 
kP, is determined by equation (15) in Kalinikos and Slavin (1986). 

The expressions for matrix elements Pi{: ,  e{{:, T{$ and for the angle functions A ,  
B ,  C, D, E are also given in Kalinikos and Slavin (1986). The effective demagnetization 
factors of anisotropy N;p, are presented in Belyakov (1984, 1986) and will be written 
below for all the particular cases under consideration. 
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The infinite system (9) gives the exact description of the linear sw processes in 
anisotropic FF and enables us to obtain the expressions for the sw spectrum and for 
the transverse (along the axis E )  distribution of the variable magnetization (8) in a 
ferromagnetic film. In the isotropic limit (N;p, = 0) this system coincides with the infinite 
system obtained in Kalinikos and Slavin (1986) (see equation (22) in Kalinikos and 
Slavin (1986)). 

3. sw dispersion equation in the form of an infinite determinant 

The condition of the vanishing of the determinant of the infinite system (9) yields the 
exact dispersion equation for propagating dipole-exchange sw in anisotropic FF. So the 
problem of determination of the exact dispersion law for sw in anisotropic FF is reduced 
to the problem of calculating eigenvalues of the block matrix of the infinite system (9). 
The calculation of eigenvalues of such a matrix could be done by means of the well 
known QR algorithm (see e.g. Wilkinson and Reinsch 1976). 

The numerical analysis of the system (9) shows that the sw spectrum of anisotropic 
 in the coordinates ( U ,  k )  (where U is a swfrequency and k ( k l ,  k 2 )  is a two-dimensional 
sw wavevector lying in the film plane) consists of the non-crossing surfaces w n ( k l ,  k , )  
with centres corresponding to the frequencies of the spin wave resonance modes w, (k ,  = 
k2 = 0). These dispersion surfaces can be numbered using the numbers of corresponding 
modes of spin wave resonance. The qualitative example of the sw spectrum of a tan- 
gentially magnetized FF is presented in figure 2. While moving along the dispersion 
surface, either along the radius (k/ lkl  = const.) or along the azimuth (lkl = const.) we 
shall find that sw dispersion and transverse distribution of the variable magnetization 
change considerably. We stress that the curvature of dispersion surface and the form of 
dispersion curve corresponding to the given direction of sw propagation are determined 
by competition between dipole-dipole interaction, inhomogeneous exchange inter- 
action and influence of crystallographic anisotropy. Thus it is not possible to draw a 
general system of dispersion surfaces for dipole-exchange sw in anisotropic FF of arbi- 
trary thickness and of arbitrary direction of M O .  

The numerical calculations of the sw spectrum for the tangentially magnetizedt 
anisotropic FF with unpinned surface spins ( d ,  = dz = 0) were done using the QR algor- 
ithm (see Wilkinson and Reinsch 1976). The accuracy of the numerical calculations was 
determined by the order of reduction of the system (9) (i.e. by the dimension of 
the finite determinant which was used in the calculations instead of the full infinite 
determinant of the system (9)) and was not worse than 0.01%. 

An example of calculated sw dispersion curves for the transverse sw (9  = 90°, 
8 = 900) in a thin ( L  = 0.5 pm) YIG film having uniaxial anisotropy is presented in figure 
3. In this particular case the effective demagnetization factors of anisotropy have the 
values (see Belyakov 1986 and (A6) in the appendix of this paper) 

Na =Na = N a  = O ,  Nix  = 2 H " / M o  YY 22 X Y  

As in the case of isotropic FF the dipole-exchange sw spectrum of anisotropic FF is 
discrete due to the exchange interaction. The uniaxial anisotropy modifies the dipole- 
exchange sw spectrum so that some of the dispersion curves have regions of 'negative' 

t We assume that in anisotropic FF 'tangential' magnetization means that the equilibrium magnetization M,, 
is oriented tangentially to the film surface. 
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Figure 3. Spectrum of transverse dipole-exchange 
sw in tangentially magnetized YIG film having uni- 
axial perpendicular anisotropy and unpinned sur- 
face spins. U,, = 1000 O e ;  4nM,] = 1750 Oe;  
U" = 170 Oe;  L = 0.5 14m. 
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Figure 4. Spectrum of non-exchange transverse 
sw in tangentially magnetized YIG film having 
uniaxial anisotropy. The dispersion curve having 
positive group velocity corresponds to the surface 
sw; the set of curves having negative group vel- 
ocity corresponds to the volume sw (see Beregov 
1984). H o  = 1000 Oe;  4 n M o  = 1750 Oe;  H" = 
170 O e ;  L = 20 pm. 

dispersion. In the particular case presented in figure 3 the dispersion branches numbered 
1 , 2 , 3  have regions of negative dispersion ( a o / a k  < 0). 

The exchange branch splitting may be neglected for the sufficiently thick FF so that 
in the longwave part of the spectrum the sw dispersion for such films could be considered 
in the non-exchange (a = 0) limit. Figure 4 shows the spectrum of non-exchange trans- 
verse sw in YIG film of the thickness L = 20 pm having uniaxial anisotropy. In this case 
the sw spectrum consists of the infinite set of volume sw having 'negative' dispersion 
and only one quasi-surface sw having 'positive' dispersion. This result is in good agree- 
ment with the results of the existing non-exchange theory (see Beregov 1984, Beregov 
and Kudinov 1987, Gieniusz and Smoczynski 1987). 

The influence of cubic anisotropy on the spectrum of transverse sw in FF of the same 
thickness is illustrated by figure 5. The calculations were made for the YIG film of 
orientation (111) (which means that the axis (111) is perpendicular to the film plane) 
when the equilibrium magnetization was directed along the axis (110). The components 
of the tensors Na for this case have the values (see Belyakov 1984 and (A6) in appendix) 

N;jx = - 2 H A / M ,  

As is shown in figure 5 ,  cubic anisotropy leads to the appearance of propagating volume 

Na yy = N a  22 = - H  A ,I Mn N:y = ~ H A / M o .  
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Figure 5. Spectrum of non-exchange transverse Figure 6 .  Spectrum of non-exchange transverse 
sw in tangentially magnetized YIG film of orien- sw in Mn-ferrospinel film of orientation (100). A :  
tation (1 11) having cubic anisotropy (MO is parallel MO parallel to the axis (110); B: MO parallel to the 
to the axis (110)). H o =  1OOOOe; 4xM,,= axis (100): C: - rpM = 25'; full circles: exper- 
1750 Oe; H A  = - 42 O e  (MO is parallel to the axis imental data from Anfinogenov etd(1986). H D  = 
(110)). H o  = 1000 Oe; 4xM, = 1750 Oe; H A  = 600 Oe;  4 n M n  = 5200 Oe;  H A  = -200 Oe: L = 
-42 O e ;  L = 20pm. 29 pm. 

sw modes having both 'positive' and 'negative' dispersion. Similar results were obtained 
in Beregov and Kudinov 1987, Gieniusz and Smoczynski 1987. 

Let us consider now a case of a tangentially magnetized FF of orientation (100). There 
is experimenal data for such a case in Anfinogenov et a1 (1986) for a 29 pm thick Mn- 
ferrospinel film. It is interesting to compare these experimental results with the results 
of our calculations. The components of the tensor Na for this case are (Belyakov 1984) 

Nix  = N;y = 0 N;y =  COS 4 q M  - 1)HA/2Mo 

N% = -(COS 4 q M  + 3)HA/2Mo 
where qM is the angle between theMO and the axis (100). 

The results of our calculations are shown in figure 6 by full curves. Full circles in 
figure 6 show the experimental results of Anfinogenov et a1 (1986). Full curves marked 
by letters A ,  B,  C correspond to the different orientations of M O  in the film plane (i.e. 
to the different values of qM) .  The calculations show that the minimum value of sw 
frequency is achieved when M O  is parallel to the axis (100). In this case the sw spectrum 
consists of only one sw mode of quasi-surface-type (curve B in figure 6). For all the other 
orientations of MO the sw spectrum consists of one quasi-surface sw mode and an infinite 
number of volume sw modes (curves A, C in figure 6). The best coincidence between 
the experimental results and the results of our calculations for the quasi-surface sw is 
observed when qM = 25" (curve C in figure 6). This enables us to determine the actual 
orientation of the equilibrium magnetizationMo with respect to the crystallographic axis 
in the experimental sample. The volume sw modes predicted by the theory were not 
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observed in the experiment of Anfinogenov et a1 (1986), probably due to the very low 
values of group velocity for these modes. The latest experimental results for ferrospinel 
films by Anfinogenov et a1 1988 also appear to be in good agreement with the results of 
the above calculations. As it follows from analysis of the equation (9) for the case O= 
90°, p' = 90" the volume sw modes propagating perpendicularly to the vector MO in the 
anisotropic film appear only in the case when one (or both) of the following conditions 
are satisfied 

N:x - N;y # O  N$ # 0. 

In the case when N i x  - # 0 the sign of sw dispersion coincides with the sign of this 
difference. For example, the sw modes in figures 4 and 6 having 'negative' dispersion 
correspond to the negative value of the difference N:x - N;y .  

4. sw dispersion equation in the form of an infinite series 

The infinite system of equations (9) enables us to obtain the exact dispersion equation 
for sw in anisotropic FF not only in the form of an infinite determinant but also in the 
form of an infinite series. The method of transformation of an infinite determinant into 
an infinite series is described in Vendik and Chartorizhskii (1970). Let us write as an 
example a dispersion equation in the form of an infinite series for the case of longitudinal 
(p' = 0) sw propagating in FF with totally unpinned (d,  = d 2  = 0) or totally pinned 
(d ,  = d2 = a) surface spins: 

w M ( Q n  + wMN$y)l,,k sin 28 
,, (Q,, + U ~ N ; ~ ) ( C ~ , ,  + oMN;, + w M k :  sin2 O/ki + w M  sin2 0) - wL(N&)*  - w i  

= - I  (13) 
where Ink has different values for different pinning conditions. 

(i) For the case of totally unpinned surface spins: 

I n k  = k$Fn/k:(l + n = 0 , 1 , 2 .  . . ; 
(ii) for the case of totally pinned surface spins: 

where 

F,, = 2[1 - (-I),, exp(-kcL)]/kEL 

and a,,, is a Kronecker delta. 
The series in equation (13) converges and may be used in the numerical calculations 

as it stands. It is also possible to reduce (13) to the transcendental dispersion equation 
although the transcendental form of the equation is not convenient for numerical 
calculations. 

5. Approximate sw dispersion equation in anisotropic FF 

In accordance with Kalinikos and Slavin (1986) we can use classical perturbation theory 
for the approximate solution of the system (9). In the first approximation of the per- 
turbation theory where frequency degeneracy of different sw modes is not taken into 
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account, we obtain the explicit approximate dispersion equation w, = f(kc, K,) for 
dipole-exchange sw in anisotropic FF with mixed exchange boundary conditions from 
the condition det D, = 0 in the form 

(TGo,/oM + = (1: + sin2 8 + APZ + N;;)(JY, + + N & )  

- (CPE + N&TE)2 .  (14) 

In the case when both components of the magnetization vector m (m' and my) are pinned 
uniformly on each side of FF the dispersion equation (14) can be rewritten in the form of 
a well known dispersion equation for the sw in the unlimited ferromagnetic media (see 
Herring and Kittel 1951): 

U', = A 2  n - IBn l 2  = Q n [ R n  + w M ( ( F n n  + (15) 

(160) 

(16b) 

(17a) 

where 

A ,  = R, +wM(sin2 8 + N ; x  +N$)/2+wMP,,[1 -sin28(1+cos2cp)]/2. 

B,  = A,, - R,  - wM(Pnn sin2q + N & )  + iwM(Pnn cos 8 sin 2 cp - N;,)/2 

F,, = sin2 8 - P,, sin2 8 cos2 cp + P,,[cos2 8 

+ wM(l  - P,,) sin2 cp sin28/Q,] 

F;, = N& + N;, + [N;,N$, + N;, sin2 8 - (N;,)*]oM/Q, 

+ (N;,[cos2cp - sin2 8( l  + cos2cp)] + N& sin2cp 

- N;, COS 8 sin 2 ~ ~ ) P , , o M / Q , , .  (17b) 

In the isotropic limit FE,, = 0, and equation (15) reduces to the approximate dispersion 
equation for sw in isotropic FF (see equation (45) in Kalinikos and Slavin 1986). 

The first-order approximation in the perturbation theory where frequency degener- 
acy (det D,, = det D,,,,) of sw modes with different numbers (n  # n ' )  is taken into 
account yields the secular dispersion equation of the form 

This equation can also be written as follows: 

where the left-hand part is a product of the non-degenerate dispersion equations for the 
spin waves with numbers n and n ' ,  and the right-hand part describes the interaction (or 
hybridization) of these sw modes. 

Equations (14) and (18) are rather general. They describe the dipole-exchange sw 
spectrum in anisotropic FF with mixed exchange boundary conditions and arbitrary 
directions of crystallographic axes and the equilibrium magnetization. The boundaries 
for applications of these approximate equations in the isotropic limit are discussed 
extensively in Kalinikos and Slavin (1986) and Slavin and Fetisov (1988). 

In practice, as a rule, it is interesting to have the approximate dispersion equations 
in the explicit form for the particular cases of definite orientation of crystallographic 
axes and bias magnetic field in the anisotropic FF. Let us consider the dipole-exchange 
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sw spectrum in anisotropic FF in some particular cases using the approximate dispersion 
equation (14). 

6. Perpendicular magnetization 

In the case of perpendicular magnetization (8  = 0, J ;  = JY, = J, = Q,/w,) the dis- 
persion equation (14) may be written in the Kittel form (15), where F,, = P,, and 

C n  = W x  + N;y + [WxN$y - (N:y)*Iw,/Qn 

+ ( N $ y  cos2 rp + N:x sin2 rp - N:Y sin 2 cp)P,,wM/Qn. (19) 

As is clear from equations (15) and (19), anisotropy in perpendicularly magnetized FF 
can lead to the dependence of the sw eigenfrequency w, on the angle rp (i.e. on the 
direction of sw propagation in the film plane). This effect takes place only if the following 
conditions are fulfilled: 

N:x f N;,, N;Y # 0 (20) 

i.e. if anisotropy changes ellipticity of polarization of the propagating sw in the plane 
perpendicular to the direction of equilibrium magnetization M O .  This conclusion is in 
accordance with the analogous conclusion for the infinite media (see e.g. Gurevich 
1973). 

For the particular cases of crystallographic orientations ( l l l ) ,  (loo), (110) 
demagnetization factors of anisotropy have the following values (Belyakov 1988): 

(i) orientation (111) 

(21) 

N;z  = - 2HA/Mo (22) 

N:x = N &  = - 2 H A / M o  N:z - 2HA/3Mo, N& = 0 

(ii) orientation (100) 

Na = N a  = N a  = O  
xx YY XY 

(iii) orientation (110) 

N:x =-3HA(1-cos2Y)/2Mo N& = -3HA(1+co~2Y) /2Mo 

Nzaz = - HA/M, N& = - 3HA sin 2 Y/2Mo (23) 

where Y is the angle between the axis x and the crystallographic axis (100) in the film 
plane. 

As is clear from (20) and (21)-(23), the angular dependence of the sw eigenfrequency 
exists only in the case of the orientation (110). In films with the orientations (111) and 
(100) the influence of the cubic anisotropy on the sw spectrum is equivalent to the change 
in magnitude of the internal magnetic field Hi+ Ai, and leads to the frequency shift of 
the sw dispersion curves. The sw dispersion equation for these orientations has the form 
of the sw dispersion equation in isotropic FF (see (52) in Kalinikos and Slavin 1986): 

U’, = ( B H  + M O M k : ) ( h H  + awMk’, + w M P n n )  (24) 

where hH = yffi and ffi has the following values: 
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(i) orientation (111) 

8, = Hoz - MO - 4HA/3 

(ii) orientation (100) 

8i = Hoz - MO + 2 H A .  

The influence of uniaxial perpendicular anisotropy on the sw spectrum in the per- 
pendicularly magnetized FF is also equivalent to the change in the internal magnetic field 
for the value 2H". So the sw spectrum in this case is also described by equation (24) 
where 8, = Ho, - M O  + 2H". 

It is interesting to note that although the sw eigenfrequency (24) is always affected 
by crystallographic anisotropy the sw group velocity 

v,, = aw,/ak,  = (WM~H/2"P,n/akc) (25) 
is in some cases practically independent of the influence of anisotropy. For example, in 
the FF with unpinned surface spins in the longwave part of the sw spectrum, the expression 
for the group velocity of the lowest sw mode ( n  = 0) has the form 

v,, = O M L / 4  (26) 
i.e. it is determined only by the film thickness and the value of equilibrium magnetization 
MO. 

7. Tangential magnetization 

We obtain the explicit expression for the sw dispersion equation in tangentially mag- 
netized FF (e = 90') from (14) and (12) using the expressions for the angle functions A ,  
C, D, E given in Kalinikos and Slavin (1986): 

( T g w ,  - 0.1~~2 sin qQY,",)' = ($2; + w M  - w M P z  + w , ~ N : ~ )  

X ($2; + w M  sin2 qP{{ + w M N ; f y )  - W L ( T ~ N : ~ ) * .  (27) 
Let us consider some particular cases of FF crystallographic orientation. In the case of a 
tangentially magnetized cubic FF demagnetization factors of anisotropy have the fol- 
lowing values (Belyakov 1988): 

(i) orientation (1 11) 

N:x = - 2HA/Mo 

where q M  is the angle between the M O  and the crystallographic axis (100) in the film 
plane 

N a  YY = N &  = - HA/Mo N:Y = f i H A  sin 3 q M / M ,  

(ii) orientation (100) 
N a = N  xx :y - - 0 N:z = -H*(coS 4 P)M + 3)/2Mo 

N;Y = ~H*(cos  4 P)M - 1)/2Mo (28) 
(iii) orientation (110) 

N;x = -3HA sin2 q M / M o  

N:, = -HA(s in4qM + 2 c o s 4 q M ) / M o  

N;Y = -9HA sin22qM/4M, 

N:? = 0 



Spin wave spectrum for anisotropic ferromagnetic films 9873 

where q M  is the angle between the M O  and the crystallographic axis (100) in the film 
plane. 

In the case of perpendicular uniaxial anisotropy in tangentially magnetized film the 
demagnetization factors are: 

(29) Na = N a  = N a  = O .  N &  = - 2 H U / M o  Y Y  22 xy 

Using the expressions (27)-(29) we may obtain the simple explicit sw dispersion 
equation for FF of the orientation (111) having cubic and uniaxial anisotropy and 
unpinned surface spins 

U ;  = [a ,  + U,,,, - wMP,,, -2y(HA +HU)](a, + wIMPnn sin*q - y H A )  

-2(yHA sin 3 qM)* (30) 

where Q,, is determined by the formula (12) and Hi = Hoz + HA. 
Equation (30) can be used for determining the magnetic parameters (equilibrium 

magnetization and effective magnetic fields of anisotropy) of the FF under consideration 
by means of measuring the frequency of sw propagating in the FF. In particular, the angle 
dependence of the sw frequency on = f ( q A V )  enables us to determine the effective 
magnetic field of the cubic anisotropy HA.  The measurement of the sw frequencies 
corresponding to the different values of the sw wavenumber enables us to distinguish 
and determine MO and the effective magnetic field of the uniaxial anisotropy H”. 

8. Hybridization of the sw dispersion branches 

The hybridization (or interaction) of ‘unperturbed’ diagonal sw modes with different 
numbers takes place near the spectral points of frequency degeneracy of these modes. 
The unperturbed dispersion equations for these sw modes are given by the expressions 
(14), (15), (24), (27), so the condition of frequency degeneracy has the form 

n # n’. 

Hybridization of the crossing dispersion branches leads to the formation of dipole ‘gaps’ 
in the dipole-exchange sw spectrum of the FF. The decrease of the sw group velocity in 
the spectral regions of hybridization causes an increase in the spatial attenuation of 
propagating sw in these regions. In experiments this effect manifests itself in the form 
of oscillations in the propagation loss characteristic of the experimental device (delay 
line) (see e.g. Adam et a1 1978, Kalinkos et a1 1983, Andreev et a1 1984) and can be 
observed in perpendicularly as well as tangentially magnetized FF. We shall consider 
both these particular cases below. 

Using equations (18a, b )  we obtain the explicit dispersion equation describing the 
effect of hybridization of the sw modes with numbers n and n’ in the particular case of 
perpendicularly magnetized (e = 0, cp = 0) anisotropic FF with either totally pinned or 
totally unpinned surface spins: 

wn(k i )  = wn’(k5) 

(U: - W ’ ) ( W ; ,  - 0’) = wLP,,,P,,,(Q, + u , V N ; ~ ) ( Q , ~  + U),MN;~) (31) 

where U,, U,$ are the frequencies of the ‘unperturbed’ sw determined by equations (15) 
and (19), and P,, is the matrix element of dipole-dipole interaction determined in 
Kalinikos and Slavin 1986. 
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The intensity of hybridization can be evaluated by means of the width of the dipole 
‘gap’ in the sw spectrum of the FF 

where wo = w,(kco) = wnt(kco) is the central frequency of the dipole ‘gap’. 
In the case of transverse (q = 90’) sw propagating in tangentially magnetized 

(0 = 900) anisotropic FF with either totally pinned or totally unpinned surface spins, the 
secular dispersion equation (18) yields 

(U: - 0 2 ) ( w $  - 02) = 2oL(a,a,< - o’)(P;,, +4Q:,r) + wL(P?,, - 4Q;,,) 

x [ ( b +  - ~ ~ w P , , , ) ( b +  -OMP,~,,<) + (b -  - w ~ P n n ) ( b - - o ~ P n ’ n ’ ) ]  

- o & ( P ; ~ ,  - 4Qi,1)2 (33) 
where 

w, and on, are the frequencies of the ‘unperturbed’ sw determined by equation (27). 
Using (33) it is a straightforward task to derive the expressions for the width of the 

dipole ‘gap’ in the spectrum of transverse sw in the tangentially magnetized anisotropic 
FF : 

(i) for the case when sw modes have a similar type of symmetry 

(ii) for the case when sw modes have different types of symmetry 

SCO,,,, = U’,Q,,,[~(NZ~)~ + (1 + - N&)(P,, + P,,,,)]1/2/~o (35) 

where w o  is the central frequency of the dipole ‘gap’. 
Strong dependence of the amplitude of oscillations of the experimental transmission- 

loss characteristic on the relative orientation of the external bias magnetic field H o  and 
the crystallographic axis in the film plane was observed in the experiments of Andreev 
et a1 (1984) for the transverse surface sw in a tangentially magnetized YIG film of 
orientation (110). 

The equations (34), (35) ,  (28) enable us to analyse the influence of crystallographic 
anisotropy on the width of dipole ‘gaps’ in the sw spectrum of  of the orientation (110). 
Using (34), (35) we calculated the angle dependencies of the ‘gap’ width So,,,, = f ( q M )  
in the YIG film with unpinned surface spins for the case of hybridization of the lowest sw 
modes. The angle dependence of the width of the ‘gap’ caused by hybridization of the 
lowest sw (n  = 0) with odd and even numbered sw modes is presented in figure 7. It can 
be seen that the angular dependence is determined by the symmetry of the interacting 
sw modes. In the case of interaction of sw modes with a similar type of symmetry (when 
n and n’ are either both even or both odd), the maximum width of the dipole ‘gap’ in the 
spectrum is obtained when the direction of Ho coincides with the direction of the axis 

The minimum width is obtained when the Ho is directed along the axis (lll), and 
whenH, is directed along the axis (100) the ‘gap’ width has a local maximum. The values 
of both maxima are quite close, so the is only several per cent greater than G W ( , ~ ~ , .  

(110). 
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Figure 7. Angular dependence of the width of 
dipole ‘gap’ in the dipole-exchangesw spectrum of 
the YIG film havingcubic anisotropy and unpinned 
surface spins. H o  = 1000 O e ;  4,2M,, = 1750 Oe;  0 90 180 270 360 

v*l ( d e g )  H A  = -42 Oe;  K:L = 0.1. 

In the case of interaction of sw modes with different types of symmetry the maximum 
‘gap’ width is obtained when the H o  is directed along the axis (111); the minimum 
corresponds to the direction (loo), and when H o  is directed along the axis (1 10) the value 
of 6ql l0 ,  is quite close to that of 6qlo0p 

The calculated angle dependencies of the dipole ‘gap’ width in the sw spectrum are 
in good qualitative agreement with the results of the experiments by Andreev eta1 (1984) 
where the width of the dipole ‘gap’ in the sw spectrum in the YIG film was measured 
while the direction of the external magnetic field lying in the film plane was changed. 

The expressions obtained, (34) and (35), for the dipole ‘gap’width in the sw spectrum 
of FF enable us to determine the directions of magnetization corresponding to the 
minimum values of the ‘gap’ widths in the cases of arbitrary crystallographic orientations 
of the FF. The results of such theoretical estimations might appear to be useful in 
development of sw signal processing devices as by choosing the right direction of the 
external magnetic field it is possible to diminish significantly the oscillations of the 
transmission loss characteristic of the sw device under consideration. 

9. Conclusions 

In this paper we obtained the exact expressions for the dipole-exchange spin wave 
spectrum in anisotropic ferromagnetic films where all the significant interactions were 
taken into account. 

We also obtained simple approximate dispersion equations which enable us to make 
qualitative analysis of the influence of the crystallographic anisotropy on the sw spectrum 
of the FF both in the dipole-exchange and the non-exchange limits. 

The results of this analysis and the results of numerical calculations using the exact 
sw dispersion equations (see sections 3,4)  appear to be in good agreement with the 



9876 B A Kalinikos et a1 

results of the experiments performed in YIG and Mn-ferrospinel films (see Andreev et 
a1 1984, Anfinogenov et a1 1986, Anfinogenov et a1 1988) as well as with the results of the 
existing non-exchange theory of sw spectrum of anisotropic FF (see e.g. Beregov 1984, 
Gieniusz and Smoczinski 1987). 

The consideration of the influence of crystallographic anisotropy on the dipole- 
exchange sw spectra of FF presented in this paper may turn out to be vital for the 
development of sw signal processing devices using monocrystalline hexaferrite films as 
the relative values of effective magnetic fields of anisotropy in such films are much 
greater than in YIG films. 

The general theory of sw spectra in ferromagnetic films developed in this paper can 
also be used as a basis for development of the theory of nonlinear sw effects and the 
theory of sw relaxation in anisotropic monocrystalline FF. 

Appendix 

This appendix gives the determination of the equilibrium orientation of the saturation 
magnetization MO in the aniosotropic film. 

The angles q and 8, characterizing the equilibrium orientation of the saturation 
magnetizationM,, can be determined from the conditions of minimization of the density 
of magnetic energy of the ferromagnetic sample (see e.g. Gurevich 1973, Lax and 
Batton 1962). These conditions for the ferromagnetic ellipsoid having cubic and uniaxial 
anisotropy are given in Belyakov (1988) in the form 

- (aE,/a8) = (dE,/d8) + (dE,/aO) + (dE, /d8)  

-(aE,/aqn> = ( a E m / a q )  + ( a E A / a q )  + ( a E u / a ~ ) .  
(AI) 

where E,  is the density of energy of Zeeman interaction with bias external magnetic 
field, E ,  is the density of demagnetization energy, while E ,  and E, are the densities 
of energy of cubic and uniaxial anisotropy correspondingly. The expressions for the 
densities of all the types of magnetic energy mentioned above are given in Belyakov 
(1988) for the general case of arbitrary orientation of the axis of the ferromagnetic 
ellipsoid with respect to the orientations of the axis of the cubic crystal and the axis of 
uniaxial anisotropy. Since we are dealing with ferromagnetic films we shall write here 
the system (Al )  for the particular case of a thin ferromagnetic disc of crystallographic 
orientation (I  11) having the axis of uniaxial anisotropy perpendicular to its plane (see 
Belyakov 1988): 

H, W = 6(2Hu - M O )  sin 2 8 + HA P o  

M O  sin 8 sin 8, sin(qH, - q M )  = H A P ,  

where 

and KU and K 1  are the constants of uniaxial and cubic anisotropy. The angles qHn and 
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qM are determined with respect to the crystallographic axis (112) in the film plane (see 
figure 1). 

If the angles qH, q H o  and OH determining the orientation of the external bias magnetic 
field Ho are given, the angles ~1 and 8 characterizing the equilibrium orientation of the 
saturation magnetization MO in the particular case specified above can be obtained from 
the numerical solution of the transcendental system (A2) taking into account that (see 
figure 1) 

= T H O +  q H  - qhf. 

In the case of different crystallographic orientations of FF the general system of 
equations (Al) must be solved to determine the orientation of the saturation mag- 
netization MO. 
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